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Abstract

Affect or emotion classification from speech has much to benefit from ensemble classification
methods. In this paper we apply a simple voting mechanism to an ensemble of classifiers and attain a
modest performance increase compared to the individual classifiers. A natural emotional speech
database was compiled from 11 speakers. Listener-judges were used to validate the emotional content
of the speech. Thirty-eight prosody-based features correlating characteristics of speech with
emotional states were extracted from the data. A classifier ensemble was designed using a multi-layer
perceptron, support vector machine, K* instance-based learner, K-nearest neighbour, and random
forest of decision trees. A simple voting scheme determined the most popular prediction. The
accuracy of the ensemble is compared with the accuracies of the individual classifiers.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Ensemble methods for classification have been gaining greater acceptance in many fields
of applied machine learning. Improvements in computing power and memory allow more
complex models to be generated and trained in less time.

The increase in human—computer interaction in recent years has led to a marked increase
in research on emotion recognition and modelling. It is now desirable to design computer
systems and robots that respond to the affective states of humans, enabling more natural
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interaction. Such applications are useful in areas where humans interact with automated
systems like call-centres, computer-aided learning, or interactive films (Picard, 1997).

In this paper, we focus on the application of spoken affect classification in a call-centre. For
example, a customer telephones a customer service representative (CSR) and has concerns or
questions about services, account information, bill payments, etc. In many cases, the customer
is telephoning to resolve a dispute. During the call, emotion may be expressed by the customer
and/or the CSR. It is helpful for the CSR to know when such a situation is arising and to take
steps to ensure the customer remains satisfied with the service. Dissatisfied customers are likely
to cause further problems or switch to a competitor, which in turn affects the potential profits
of the company. Additionally, a team lead or manager may want to inquire on the status of
any currently active calls in order to help coach new or inexperienced CSRs (see Fig. 1).

A call can be monitored for emotional variance by periodically making assessments on
the speech signal. Features correlating vocal affect with emotional states are extracted
from the speech signal using a variety of signal processing techniques. Statistics on these
features are also calculated and converted into feature vectors which are then input to a
classifier. The classifier, trained on similar data, assigns the vector to a class and the
software displays the output on the CSRs terminal.

The rest of the paper is organised as follows. In Section 2 we present our methodology,
including data collection, feature extraction, and classification methods. In Section 3, we
introduce a simple machine learning technique to the field which has been overlooked in
the past. Section 4 shows our experimental results comparing the voting scheme with each
of the base classifiers individual performance. A discussion on these results follows.
Finally, Section 5 gives our conclusions and avenues for future work.

2. Methodology
2.1. Data collection

The application of spoken affect recognition in the real-world has often suffered due to a
lack of natural speech data (Batliner et al., 2003). There are difficulties collecting natural,
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Fig. 1. Affect recognition in a call-centre. Real-time assessments can be made from the speech signal and
displayed on the CSRs computer terminal, allowing improved response to customer emotion.
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spontaneous emotional speech. It is unethical to record speakers without their consent,
and the quality and content of the recordings are often poor and sparse. Because of this,
most studies have used actors to gather emotional speech (Dellaert et al., 1996; Polzin and
Waibel, 2000). However, databases of acted speech do not accurately reflect real-world
spontaneous dialogue.

In spontaneous dialogue, affect is often subtly represented and difficult to detect, even
for humans (Nwe et al., 2003). Other studies attempt to elicit more accurate content by
inducing emotion in naive speakers (Ang et al., 2002). In these situations, data are collected
from participants interacting with systems designed to induce different emotions, for
example, a malfunctioning appointment scheduling system that causes irritation and anger
in the subjects (Huber et al., 2000). Although this technique brings the data closer to the
real-world, the participants are not in a real scenario where stress can be accurately
modelled.

In contrast to most past research, we collected real-world affective speech data from a
call-centre providing customer support for an electricity company. Customers telephoned
with general queries, problems and comments and each call was handled by a CSR. The
distribution of affective content in the data is mainly neutral speech, with the second
largest subset representing angry callers.

Due of the low distributions of happiness, sadness, surprise, disgust, and fear, it can be
assumed that the probability of these occurring in the call-centre are quite low, and
because of this it is safe to consider only anger and neutral emotional states. Similarly,
(Devillers et al., 2002) also used data from a customer service centre. This study also found
low emotion distribution and subsequently retained two of the basic emotion classes, anger
and fear, because the probabilities of other emotions in that context were very low. (Ang et
al., 2002) used induction methods for collecting emotional speech data and observed a high
amount (84%) of neutral samples, followed by a low amount (8%) of annoyance. Due to
this they limited their study to include only annoyance and frustration versus everything
else.

After an initial manual segmentation and classification, the data set comprised 190 angry
utterances and 201 neutral utterances totalling 391. However, to ensure that the manual
classifications were objective, nine listener-judges were instructed to classify the entire data
set. After the results of the listener-judges were available, the final data set comprised 155
angry utterances and 233 neutral utterances. In total there were 388 utterances (three
utterances were labelled as ties and were subsequently discarded). This data set is labelled
the NATURAL data set.

2.2. Acoustic correlates to anger

The fundamental frequency (FO) contour has been shown to vary depending on the
emotional state being expressed. Early research discovered that neutral or unemotional
speech has a much narrower pitch range than that of emotional speech (Cowan,). It was
also found that as the emotional intensity is increased, the frequency and duration of
pauses and stops normally found during neutral speech are decreased (Murray and Arnott,
1993).

More specifically, angry speech typically has a high median, wide range, wide mean
inflection range, and a high rate of change (Fairbanks and Pronovost, 1939). It was
discovered in Williams and Stevens (1972) that vowels of angry speech to have the highest
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FO0, and (Fonagy, 1978) found that angry speech exhibits a sudden rise of FO in stressed
syllables and the FO contour has an “angular” curve (Williams and Stevens, 1972).
Frustration, which has similar but less extreme physiological effects as anger, has a higher
fundamental frequency than neutral speech (Frick, 1986). Anger is described as having “‘an
increase in mean pitch and mean intensity” (Scherer, 1996). Downward slopes are also
noted on the pitch contour.

Fig. 2 shows two example pitch contours for angry and neutral utterances from the
database. It can be seen that the angry sample shows the wider range, with downward
slopes, and the neutral sample shows a much narrower and flatter contour.

The formant frequencies (F1, F2, F3) have also been noted to contain emotional
markers. It was found that anger produced vowels “with a more open vocal tract” and
from that inferred that the first formant frequency would have a greater mean than that of
neutral speech (Williams and Stevens, 1972). It was also noticed that the amplitudes of F2
and F3 were higher with respect to that of F1 for anger and fear compared with neutral
speech. Neutral speech typically displayed a “‘uniform formant structure and glottal
vibration patterns,” contrasting the “irregular” formant contours of fear, sadness, and
anger. Further, it has been found that angry speech has a noticeably increased energy
envelope (Fonagy, 1981).

The speaking rate has been used in previous research (Dellaert et al., 1996; Petrushin,
2000; Ang et al., 2002). Fear, disgust, anger, and happiness often have a higher speaking
rate, while surprise has a normal tempo and sadness a reduced articulation rate (Williams
and Stevens, 1972). Anger has an increased speech rate, and “pauses forming 32% of total
speaking time” (Fairbanks and Hoaglin, 1941; Fonagy, 1981).

2.3. Prosodic features

Based on the acoustic correlates described in the previous section and the literature
relating to automatic emotion detection from speech, we selected features based on four
prosodic groups: the fundamental frequency, energy, rhythm, and the formant frequencies.
The fundamental frequency, energy, and formant frequencies are represented as contours.
From these contours, we selected seven statistics: the mean, minimum, maximum, standard
deviation, value at the first voiced segment, value at the last voiced segment, and the range.

Pitch contour for angry utterance
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Fig. 2. Pitch contours for anger and neutral speech samples from the NATURAL speech corpus. The contour for
the angry utterance has a much wider range and downward slopes are apparent. The contour for the neutral
utterance has a narrow range which represents properties of calm speech.
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For the rhythm-based features, we selected three: the speaking (articulation) rate, average
length of unvoiced segments (pause), and the average length of voiced segments.

In total, we selected 38 prosodic features which are used as a starting point for
describing the variation between angry and neutral speech. These are listed in Table 1.

For the extraction of the pitch contour, we used the robust algorithm for pitch tracking
(RAPT) (Talkin, 1995). This algorithm uses the cross-correlation function to identify pitch
candidates and then attempts to select the “best fit” at each frame by dynamic
programming. One of the benefits of using the cross-correlation function is that it does
not suffer the windowing dilemma of the autocorrelation function while maintaining
resolution for high pitch values and the ability to detect low pitch values (Rabiner and
Schafer, 1978).

The first three formant frequencies were extracted using linear predictive coding (LPC)
and dynamic programming to select optimal candidates based on their scores in relation to
previous candidates. The candidates are then ranked according to their relative location,
bandwidth, and relation to the previous formant candidates. The best candidates are
selected for each formant using dynamic programming similar to that used for the RAPT
(Rabiner and Schafer, 1978).

The energy envelope consists of the magnitude of the signal calculated over a frame or
window in order to average or smooth the contour. The energy frame size should be long
enough to smooth the contour appropriately but short enough to retain the fast energy
changes which are common in speech signals and it is suggested that a frame size of
10-20 ms would be adequate (Rabiner and Schafer, 1978). In this paper we used a frame
size of 10 ms.

The rhythm-based statistics are all based on the voiced and unvoiced segment durations.
The rate of speech (articulation) is estimated by counting the number of syllables, which is
roughly equal to the number of voiced-to-unvoiced and unvoiced-to-voiced transitions
(hereafter referred to only as voiced—unvoiced transitions) during the utterance. A segment
(one or more consecutive frames) is deemed to be voiced if it is periodic, in other words if it
has a value greater than zero for the fundamental frequency. A segment is unvoiced if it is
aperiodic, or has no fundamental frequency.

Table 1

Feature groups and statistics used for measuring differences between angry or neutral speech

Feature group Statistics

Fundamental frequency (F0) (1) mean, (2) minimum, (3) maximum, (4) standard deviation, (5)
value at first voiced segment, (6) value at last voiced segment, (7) range

Formant frequencies (F1, F2, F3) (8, 15, 22) mean, (9, 16, 23) minimum, (10, 17, 24) maximum, (11, 18,

25) standard deviation, (12, 19, 26) value at first voiced segment, (13,
20, 27) value at last voiced segment, (14, 21, 28) range

Short-time energy (29) mean, (30) minimum, (31) maximum, (32) standard deviation,
(33) value at first voiced segment, (34) value at last voiced segment,
(35) range

Rhythm (36) speaking rate, (37) average length of unvoiced segments (pause),

(38) average length of voiced segments

Features are numbered in parentheses.
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2.4. Classification

Classification was performed using WEKA (Waikato environment for knowledge
analysis). WEKA is a data mining workbench that allows comparison between many
different machine learning algorithms. In addition, it also has functionality for feature
selection, data pre-processing, and data visualisation.

The selection of base-level classifiers was done by evaluating several algorithms over the
NATURAL data set and selecting the top performers. Table 2 shows the classification
accuracies for the algorithms initially selected. In order to retain some degree of simplicity,
only the top five algorithms are retained. As can be seen, the top performers are the
support vector machine (SVM) with the radial basis function (RBF) kernel, the random
forest, the multi-layer perceptron (MLP) (artificial neural network), K*, and K-nearest
neighbour with K = 5. For the SVM, the use of the RBF kernel showed a significant
improvement over the use of the polynomial kernel.

2.4.1. Support vector machines

SVMs are a relatively new machine learning algorithm introduced by Vapnik (1995).
They are based on the statistical learning theory of structural risk management (SRM)
which aims to limit the empirical risk on the training data and on the capacity of the
decision function. SVMs are built by mapping the training patterns into a higher
dimensional feature space where the points can be separated using a hyperplane.

In WEKA, SVMs are implemented as the sequential minimal optimisation (SMO)
algorithm (Platt, 1998). There are two kernels available: polynomial, and RBF. As shown
in Table 2, RBF performed better on our data set. The RBF kernel is defined as

K(xi,3;) = exp(=yllxi — x;1%),  y>0. (1)
Optimal values for the width of the RBF function, 7, and the cost parameter C, can be

found by performing a grid search on the training data. For our experiments, a grid search
of the training data yielded optimal values y = 0.7 and C = 8.0.

2.4.2. Random forests
Random forests, invented by Breiman (2001), consist of ensembles of tree predictors.
These tree ensembles are a method of growing a “forest” of decision trees by selecting

Table 2
Initial ranking of base classification algorithms on the NATURAL data set

Algorithm Accuracy (%)
SVM (RBF) 76.93
KNN (K =5) 75.85
Multi-layer perceptron 74.25
Random forest 71.98
K* 70.67
Naive Bayes 69.56
SVM (polynomial) 69.50
C4.5 Decision tree 67.47

Random tree 60.05
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features for each node randomly and independently of every other tree but with the same
distribution. When a random forest has been grown, classification requires that the
predictions of each tree are combined by voting to determine the overall prediction.

Breiman (2001) states that if we let /1;(x), h2(x), . . ., i (x) be an ensemble of classification
trees with random training vector Y, X, then the margin is defined as
mg(X,Y)=av I (X)=Y)— @a)ac avi I (hi (X)) =), 2)
J

where [ is the indicator function. The generalisation error of a random forest is
determined by

PE* = Py y(mg(X, Y)<0), 3)
where Py y is the probability over the X, Y feature space (Breiman, 2001).

2.4.3. Artificial neural networks

Artificial neural networks, specifically MLPs, have proved useful for research in emotion
recognition from speech (Huber et al., 2000; Petrushin, 2000).

In the WEKA toolkit, ANNs are implemented as the MLP. Experiments with differ-
ent network architectures led us to find highest accuracy using a one-hidden layer MLP
with 38 input units, 60 hidden units, and two output units. An early stopping criteria
based on a validation set consisting of 10% of the training set is used in all classifi-
cation experiments involving the MLP. This ensures that the training process stops when
the mean-squared error (MSE) begins to increase on the validation set and reduces
overfitting (Haykin, 1999). The learning rate was set to 0.2 which is the default setting
in WEKA.

2.4.4. K* instance-based classifier

K* is an instance-based learning algorithm based on the work of Cleary and Trigg
(1995). It uses a similarity function to classify test cases based on training cases which have
a high similarity. In this way, it is much like the K-nearest neighbour method (described
below), however, the distance measure used by K* is based on entropy (Cleary and Trigg,
1995).

Further detail on K* can be found in the paper by Cleary and Trigg (1995).

2.4.5. K-nearest neighbours

K-nearest neighbours is another instance-based classification method introduced by
Cover and Hart (1967). This algorithm has proved popular with vocal emotion recognition
(Dellaert et al., 1996; Yacoub et al., 2003) due to its relative simplicity and performance
comparable to other methods.

As with the K* algorithm, the assumption for instance-based classifiers is that new
instances will have the same class as pre-classified instances if they are close in
feature space. For the K-nearest neighbour classifier, the nearest K neighbours of the
current instance are retrieved (from some database of training instances) and the target
class which the majority share is used as the class for the current instance (Cleary and
Trigg, 1995).

In our experiments, setting K = 5 performed best on the NATURAL data set. More
information can be found in Aha and Kibler (1991).
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3. Ensemble with unweighted vote

In this paper, we will explore the advantages of using a simple unweighted voting scheme
to create an ensemble from the five base-level classifiers. With unweighted voting, the
predictions of the base-level classifiers are summed for each class and the class with the
highest number of votes determines the prediction for the ensemble (Shipp and Kuncheva,
2002).

For a voting ensemble with 7 classifiers, the output prediction (V) is determined by the
following equation:

n n

X when ZX,’>ZY/‘,
i=0 j=0
n n
v, =0 Y when Y X;<> Y, @)
» i=0 =0
n n
tie when > X;=)> 7%,
i=0 Jj=0

where X and Y denote the predictions of the base classifiers. In cases where an even
number of base classifiers is used, there is potential for a tie when half of the classifiers vote
for one class, and the other half vote for the opposition class. To avoid this problem, we
use an odd number of base classifiers.

Because the confidence information contained in the prediction of each base level
classifier is not taken into consideration, the resulting vote is unweighted, with all base
level classifiers having equal input to the vote.

4. Experimental results

All classification experiments were conducted using 10 x 10-fold cross-validation. Cross-
validation is a technique used to reduce variance in the results. The data set is divided into
10 equally sized subsets and at each iteration, one subset is held out and used for testing
while the other nine subsets are used to train the models. This is repeated such that each
subset is held out as a testing set. This process is then repeated ten times, each time using a
different seed to generate the partitions.

Table 3 lists confusion matrices for the five base classifiers introduced in the previous
section as well as the unweighted voting scheme. The SVM with RBF kernel shows the
highest performance out of the base classifiers. However, combining the predictions of
each base classifier using the unweighted voting scheme clearly increases classification
accuracy. These results indicate that employing ensemble techniques on real-world data
can lead to improved classifier generalisation.

5. Conclusion and future work

In this paper we explored the use of a simple unweighted voting scheme to combine the
predictions of base-level classifiers. Our results show that there is a modest performance
increase on the data set used. Further improvement could be gained by experimenting
with different combinations of base-level classifiers. We also succeeded in building a
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Table 3
Confusion matrices for the five base classifiers compared with the unweighted vote
Anger Neutral

(a) SVM with RBF kernel

Anger 67.94 32.06

Neutral 17.08 82.92
(b) Random forest

Anger 66.58 33.42

Neutral 22.62 77.38
(¢c)  One-hidden-layer perceptron

Anger 67.16 32.84

Neutral 22.19 77.81
(d)  K* instance-based learner

Anger 62.90 37.10

Neutral 24.16 75.84
()  K-nearest neighbours (with K = 5)

Anger 64.26 35.74

Neutral 16.44 83.56
) Unweighted vote

Anger 69.03 30.97

Neutral 15.97 84.03

(a) Instances correctly classified (%): 76.93. (b) Instances correctly classified (%): 73.07. (c) Instances correctly
classified (%): 74.25. (d) Instances correctly classified (%): 70.67. (¢) Instances correctly classified (%): 75.85. (f)
Instances correctly classified (%): 78.04.

speaker-independent framework for spoken affect classification for use in a call-centre
environment.

Ensemble methods for classification have generally been overlooked for studies in
emotion recognition. As seen in this paper, even simple methods such as combining
predictions of base classifiers with a voting scheme can show a modest improvement in
prediction accuracy.

Future work includes processing more speech data from the call-centre environment
which will be useful in determining recognition rates for a broader range of emotion. In
addition, we hope to compare other methods of combining base-level classifiers. An
important aspect relating to the application of such a system is that it must constantly be
updated as new speech data passes through it. Therefore, incremental learning and efficient
retraining approaches will be considered as part of the ongoing research.
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